
 

  

  

Abstract—In this article We establish moment inequality of 

dependent random variables, furthermore some theorems of strong law 

of large numbers and complete convergence for sequences of 

dependent random variables. In particular, independent and identically 

distributed Marcinkiewicz Law of large numbers are generalized to the 

case of m₀ -dependent sequences.. 
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I. INTRODUCTION 

et ,,, 21 ⋯XX  denote a sequence of random varibles 

defined on a fixed probability space (Ω,F,P) .The partial 

sums of the random variables are 
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Definition 1.1 (cf. Fazekas and Klesov, 2000, p. 447)[1]. A 

sequence of random variables }1,{ ≥nX n
 is said to have the 

rth (r>0) moment function of superadditive structure if there 

exists a non-negative function ),( jig  of two arguments such 

that for all b≥0 and 1≤k≤k+l 

     ),(),(),( lkbglkbgkbg +≤++                            (1) 

    1),,(|| , ≥≤ nnbgSE r

nb

α ,for some 1>α .               (2)  

Definition 1.2. Let X  be a real-valued random variable, we 

call a Locally Generalized Gaussian, If there exists 0>α ,such 

that 
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for any .Ru ∈  

Definition 1.3. Given p>0, a sequence of real-valued random 

variables }1,{ ≥nX n
 is called a Lacunary System or an 

pS  

system, if there exists a positive constant 
pK  such that 
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for any sequence of real constant 
iC  and all n≥m. 

 Definition 1.4  The random variables 
nXXX ,,, 21 ⋯  are 

said to be negatively associated if for every n and every pair of 

disjoint subsets  
21, AA of {1,2,...,n} 
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Whenever 
1f  and 

2f  are coordinatewise increasing and this 

covariance exists. 

 Definition 1.5 A stationary sequence }{ nX  is called 
0m  

-dependent for a given fixed 
0m  if (

iXXX ,,, 21 ⋯ ) and 

( ,,, 1 ⋯+jj XX ) are independent whenever 
0mij >− . 

Lemma 1.1 (Dini Theorem, Fikhtengolts, 1954, p. 286)[2]. 
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Lemma 1.2 (cf. Hu, 2005,Theorem 2.1.)[3] We assume that 

}1,{ ≥nX n
 has the rth moment function of superadditive 

structure, 
ngng =),0(  and 

ng  non-decreases, }{ nb is a 

non-decreasing unbounded sequence of positive numbers and 
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and with the growth rate 
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Lemma 1.3 (Hu, 2005,Lemma1.2)[3] Let ⋯,, 21 bb   be a 

non-decreasing unbounded sequence of positive numbers and 

⋯,, 21 aa   be nonnegative numbers. Let r and C be fixed 

positive numbers. Assume that for each  n≥1 
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then (5) and (6) hold . 

Lemma 1.4 (Yang, 2000, Corollary 3, Yang, 2001; Shao, 

2000)[4][6][7]. Let ⋯,, 21 XX  be negatively associated 

random variables with zero means and ∞<rlXE || , where r>1. 

Then there exists a positive constant C, which does not depend  

on  n, such that 
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In this paper, we assume that ⋯,, 1CC   are some positive 

constants (not necessarily always the same) independent of n. 

II. MAIN RESULTS 

Theorem 2.1 Assume that }1,{ ≥nX n
 be a Lacunary 

System, exists a positive constant 
pK  and p>2 , such that 
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Proof    From definition 1.3 ,for any sequence of real constant 
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in particularly where 1≡iC ,we have 
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In Definition 1.1 take 
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    we know  that }1,{ ≥nX n
 has the pth moment function of 

superadditive structure, and 
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thus (9)  follows  from  Lemma1.2. 

We assume that 0>nα  for infinitely many n. By (8) and 

Lemma 1.3, we know that ,
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Theorem 1.1 of Fazekas and Klesov (2000) imply that 
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hence by monotone convergence theorem, we have 
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this completes the proof. 

Remark 1  Theorem 2.1 improve result of Ryozo, 

Y.( Corollary 2) [8], and from strictly stationary strong 

mixing sequence to 
pS  system. 

Theorem 2.2 Let ),( nn FX  be a Locally Generalized 

Gaussian sequence, if ∞<= kX n
n

sup , then for any  r≥2 
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Furthermore (9) and (10) hold. 
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 Therefore, Locally Generalized Gaussian sequence is a 

Lacunary system, by Theorem 2.1, (9) and (10) hold. 

Theorem 2.3 Let }1,{ ≥nX n
 be a NA sequence, satisfying 
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Theorem 2.4 Let }1,{ ≥nX n
 be a 

0m  dependent sequence 
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with zero mean, if ∞<rn
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}1,{ ≥nX n
 be a 

2S  system, by Jensen's inequality , for 1≤r<2, 
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we know that }1,{ ≥nX n
 has the pth moment function of 

superadditive structure, and 
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thus (13) follows from Lemma1.2. 

Remark 2   This result extends independent and identically 

distributed Marcinkiewicz Law of large numbers for 
0m  

-dependent sequences. 
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